A= [ 2 0 ] dan B = [ 3 -1 5 0 ]. Matriks A adalah matriks baris berordo 1 x 2. Sedangkan matriks B adalah matriks baris berordo 1 x 4. 3. Matriks Kolom Materi Stoikiometri Rumus, Persamaan dan Contoh Soal Juni 5, 2023. Pengertian dan Struktur Teks Prosedur Lengkap dengan Contohnya Desember 31, 2022. Adik-adik.. apa yang kalian bayangkan ketika mendengar kata matriks? Kalian keinget sama sebuah film berjudul "the matriks" ya? hehe... tapi hari ini, kita mau belajar matriks bukan yang di film itu. Yuk... dicek contoh soal di bawah iniOh iya, mulai sekarang kalian bisa belajar bareng ajar hitung lewat media video lho... materi ini juga bisa kalian lihat di chanel youtube ajar hitung ya.. silahkan klik link video di bawah ini ya jika kalian tertarik... 1. Diketahui matriks . Nilai determinan dari matriks AB – C adalah ...a. -7b. -5c. 2d. 3e. 12Pembahasan Det AB – C = – = 12 – 9 = 3Jawaban D 2. Diketahui matriks , invers matriks AB adalah ... Pembahasan Jawaban A 3. Matriks X yang memenuhi adalah ... Pembahasan Jawaban C 4. Jika maka Det AB + C = ...a. -8b. -6c. -2d. 6e. 8Pembahasan DetAB + C = – = 42 – 48 = -6Jawaban B 5. Diketahui matriks Nilai x + y adalah ...a. 2b. 6c. 8d. 10e. 12Pembahasan 2x – 2 = 10 2x = 12 x = 6 9 – 2y = 5 -2y = -4 y = 2 Nilai x + y = 6 + 2 = 8Jawaban C 6. Matriks A = mempunyai hubungan dengan matriks B = . Jika matriks C = dan matriks D mempunyai hubungan yang serupa seperti A dengan B, maka matriks C + D adalah ... PembahasanHubungan matriks A dan B adalah Sehingga jika C = dan memiliki hubungan yang sama seperti A dan B dengan D, maka matriks D adalah Jadi, nilai C + D = + = Jawaban D 7. Jika matriks tidak mempunyai invers, maka nilai x adalah ...a. -2b. -1c. 0d. 1e. 2PembahasanSuatu matriks tidak memiliki invers jika determinan matriks tersebut adalah 0Det A = 02x + 1 5 – 6x – 13 = 010x + 5 – 18x – 3 = 010x + 5 – 18x + 3 = 0-8x + 8 = 0-8x = -8x = 1Jawaban D 8. At adalah transpose dari A. Jika maka determinan dari matriks At B adalah ...a. -196b. -188c. 188d. 196e. 21Pembahasan DetAt B = – = 340 – 144 = 196Jawaban D 9. Diketahui matriks-matriks . Jika matriks C = maka determinan matriks C adalah ...a. -66b. -98c. 80d. 85e. 98Pembahasan DetC = – = -66 – 32 = -98Jawaban B 10. Jika M adalah matriks sehingga maka determinan matriks M adalah ...a. -2b. -1c. 0d. 1e. 2Pembahasan DetM = – = -1 – 0 = -1Jawaban B 11. Jika maka x + y adalah ...a. – 15/4b. – 9/4c. 9/4d. 15/4e. 5/4Pembahasan3x – 2 = 73x = 9x = 3 2x + 4y = 3 2 3 + 4y = 3 6 + 4y = 3 4y = -3 y = - ¾ maka x + y = 3 – ¾ = 12/4 – ¾ = 9/4 Jawaban C 12. Diketahui matriks maka nilai x + 2xy + y adalah ...a. 8b. 12c. 18d. 20e. 22Pembahasan 3 + x +3 = 8 6 + x = 8 x = 2 5 – 3 – y = -x 2 – y = -2 -y = -4 y = 4maka nilai x + 2xy + y = 2 + + 4 = 2 + 16 + 4 = 22Jawaban E 13. Jika dan alpha suatu konstanta maka x + y = ... a. -2 b. -1 c. 0 d. 1 e. 2 Pembahasan x = 1 dan y = 0 Nilai x + y = 1 + 0 = 1 Jawaban D 14. Nilai p yang memenuhi persamaan matriks adalah ... a. -2 b. -1 c. 0 d. 1 e. 2 Pembahasan 2 + 2p = -2 2p = -4 p = -2 Jawaban A 15. Persamaan garis g dan garis h berturut-turut adalah Garis g dan garis h berpotongan di titik A, titik B p, 1 terletak pada g, dan titik C 2, q terletak pada garis h. Persamaan garis k yang melalui A dan sejajar BC adalah ... Pembahasan Garis g = Garis g = y – x = 0 atau –x + y = 0 Garis h = Garis h = x + y – 1 = 0 atau x + y = 1 Garis g dan h berpotongan di titik A, maka koordinat titik A adalah subtitusikan x = ½ dalam persamaan x + y = 1 x + y = 1 ½ + y = 1 y = ½ titik A ½ , ½ titik B p, 1 terletak pada g, maka –p + 1 = 0 p = 1 titik B 1, 1 titik C 2, q terletak pada garis h, maka 2 + q = 1 q = -1 Titik C 2, -1 Persamaan garis BC yang melalui titik B 1, 1 dan C 2, -1 adalah y – 1 = -2x + 2 2x + y = 3 atau y = – 2x + 3, maka gradien garis BC = -2 Maka, persamaan garis k adalah m = -2 karena sejajar dengan BC, melalui titik A ½ , ½ y – y1 = m x – x1 y – ½ = -2 x – ½ y = -2x + 1 + ½ y = -2x + 1 1/2 Jawaban E 16. jika maka P = ... Pembahasan Jawaban E 17. Jika P dan Q adalah matriks berordo 2 x 2 yang memenuhi adalah... Pembahasan Jawaban E 18. Jika jika determinan A dan determinan B sama, maka harga x yang memenuhi adalah ... a. 3 atau 4 b. -3 atau -4 c. 3 atau -4 d. -4 atau -5 e. 3 atau -5 Pembahasan DetA = 5 + x 3x – 5x = DetB = – 7.-x = 36 + 7x DetA = detB 3x – 9 x + 4 = 0 x = 3 atau x = -4 Jawaban C 19. Hasil kali semua nilai x sehingga matriks tidak mempunyai invers adalah ...a. 20b. -10c. 10d. -20e. 9PembahasanSyarat suatu matriks tidak memiliki invers adalah jika determinan = 0, maka x1 . x2 . x3 = -d/a = -20/1 = -20Jawaban D 20. Dua garis dalam persamaan matriks Saling tegak lurus jika a b = ...a. -6 1b. -3 2c. 1 1d. 2 3e. 1 2PembahasanGaris g = -2x + ay = 4Garis h = bx + 3y = 12mg = 2/amh = -b/3karena g dan h saling tegak lurus, maka mg x mh = -1, maka2/a . –b/3 = -1-2b/3a = -12b/3a = 13a = 2bSehingga a b= 2 3Jawaban D 21. Matriks jika A + Bt = C dan Bt adalah transpose dari B, maka d = ...a. -1b. -2c. 0d. 1e. 2Pembahasan A + Bt = Ca = 1b =1a+b-c =01 + 1 – c = 02 – c = 0c = 2c + d = 12 + d = 1d = -1Jawaban A 22. Jika maka p + q + r + s = ...a. -5b. -4c. 3d. 4e. 5Pembahasan3 + p = 1p = -2-1 + q = 0q = 1r = 05 + s = 1s = -4p + q + r + s = -2 + 1 + 0 – 4 = -5Jawaban A 23. Diketahui dan determinan dari adalah K. Jika garis 2x – y = 5 dan x + y = 1 berpotongan di A, maka persamaan garis yang melalui A dan bergradien K adalah ...a. x – 12y + 25= 0b. y – 12x + 25= 0c. x + 12y + 11= 0d. y – 12x - 11= 0e. y – 12x + 11= 0PembahasanK = detBC = – = 12 – 0 = 12Kita cari titik Asubtitusikan x = 2 dalam persamaan x + y = 1x + y = 12 + y = 1y = -1Titik A 2, -1Persamaan garis bergradien k dan melalui titik A adalahy – y1 = m x – x1y + 1 = 12 x – 2y + 1 = 12x – 24y – 12x = -25 atau y – 12x + 25 = 0Jawaban B 24. Jika M matriks berordo 2 x 2 dan maka matriks M2 adalah ...Pembahasan Jawaban C 25. Jika matriks adalah matriks ... PembahasanJawaban E Diketahuipersamaan matriks: ( 5 9 − 2 − 4 ) ( 2 a − 1 a + b ) = ( 1 0 0 1 ) Nilai a 2 + b 2 + 2 ab adalah . . .. SD Matematika Bahasa Indonesia IPA Terpadu Penjaskes PPKN IPS Terpadu Seni Agama Bahasa Daerah BerandaDiketahui persamaan matriks 2 x 1 ​ 6 12 ​ + ...PertanyaanDiketahui persamaan matriks 2 x 1 ​ 6 12 ​ + 1 0 ​ 1 3 ​ = 1 4 ​ 2 3 ​ − 1 2 ​ 3 y ​ . Nilai 2x - 3y = .....Diketahui persamaan matriks . Nilai 2x - 3y = ..... -19-17-13-7-4SIMahasiswa/Alumni Institut Pertanian BogorPembahasanPerdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!2rb+Yuk, beri rating untuk berterima kasih pada penjawab soal!©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia Dengandemikian, dapat disimpulkan sebagai berikut. Penyelesaian persamaan matriks AX = B adalah X = A-1 B. Penyelesaian persamaan matriks XA = B adalah X = B A-1. Untuk lebih jelasnya, perhatikan contoh berikut. Contoh Soal 22 : Diketahui A = dan B = . Tentukan matriks X yang memenuhi. a. BerandaDiketahui persamaan matriks 3 1 ​ 5 2 ​ a...PertanyaanDiketahui persamaan matriks 3 1 ​ 5 2 ​ a a + b ​ 0 c + 2 ​ = 1 0 ​ − 5 − 2 ​ Nilai dari a + b − c sama dengan ....Diketahui persamaan matriks Nilai dari sama dengan .... ASA. SeptianingsihMaster TeacherMahasiswa/Alumni Universitas Gadjah MadaJawabanjawaban yang tepat adalah Ajawaban yang tepat adalah APembahasanJadi jawaban yang tepat adalah A Jadi jawaban yang tepat adalah A Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!193Yuk, beri rating untuk berterima kasih pada penjawab soal!©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia
disesi Live Teaching, GRATIS! Jika diketahui matriks B memenuhi persamaan 3 1 3 2 . 2 5 1 3 = 2 1 4 5 . B maka determinan dari B − 1 adalah. 3 1 3 2 . 2 5 1 3 = 2 1 4 5 . B 3 1 3 2 . 2 5 1 3 = 2 1 4 5 .
Hai Quipperian, saat belajar SPLDV atau SPLTV pasti kamu akan bertemu beberapa persamaan yang memuat beberapa variabel, kan? Biasanya, kamu diminta untuk menentukan nilai setiap variabelnya. Salah satu cara yang bisa kamu gunakan untuk menyelesaikan SPLDV maupun SPLTV adalah matriks. Apa yang dimaksud dengan matriks serta apa saja jenis-jenisnya? Yuk, simak artikel selengkapnya berikut ini. Pengertian Matriks Matriks adalah angka-angka yang disusun sedemikian sehingga menyerupai persegipanjang berdasarkan urutan baris dan kolom. Angka-angka yang menyusun matriks disebut sebagai unsur atau elemen. Umumnya, matriks berada di dalam tanda kurung dan dinyatakan sebagai huruf kapital. Sementara itu, unsur atau elemen dinyatakan sebagai huruf kecil serta memiliki indeks. Indeks tersebut menyatakan letak baris dan kolom unsur. Baris adalah susunan angka yang arahnya horizontal atau mendatar. Sementara kolom adalah susunan angka yang arahnya vertikal. Perhatikan contoh matriks berikut. Dari contoh di atas, a11, a12, a13, …, a33 disebut sebagai unsur. Sementara indeks 11 – 33 menunjukkan letak baris dan kolom unsur a. Misalnya a11 berarti elemen a berada di baris ke-1 dan kolom ke-1, a12 berarti elemen a berada di baris ke-1 dan kolom ke-2, dan seterusnya. Nah, banyaknya baris dan kolom di dalam matriks disebut sebagai ordo. Kira-kira, matriks P di atas termasuk ordo berapa ya Quipperian? Jenis-Jenis Matriks Adapun jenis-jenis matriks adalah sebagai berikut. 1. Matriks baris Matriks baris adalah matriks yang hanya memiliki satu baris dengan beberapa kolom. Perhatikan contoh matriks baris berikut. Berdasarkan contoh di atas, baik matriks P, Q, maupun R semuanya termasuk matriks baris. Namun, ordo ketiganya berbeda karena jumlah kolomnya berbeda. Matriks P memiliki ordo 1 × 3, matriks Q memiliki ordo 1 × 4, dan matriks R memiliki ordo 1 × 2. 2. Matriks kolom Matriks kolom adalah matriks yang hanya memiliki satu kolom dengan beberapa baris. Ya, pada prinsipnya sama sih dengan sebelumnya. Perhatikan contoh matriks kolom berikut. Ketiga matriks di atas memiliki kolom yang sama, yaitu satu. Namun, baris ketiganya berbeda. Dengan demikian, ordonya juga pasti berbeda. Matriks P memiliki ordo 3 × 1, Q memiliki ordo 4 × 1, dan R memiliki ordo 2 × 1. 3. Matriks nol Matriks nol adalah matriks yang bernilai nol di semua elemennya. Perhatikan contoh matriks nol berikut. 4. Matriks persegi Merupakan matriks yang memiliki jumlah baris yang sama dengan kolomnya, seperti matriks ordo 2 × 2, 3 × 3, dan seterusnya. Perhatikan contoh berikut. 5. Matriks segitiga atas Merupakan bentuk matriks persegi yang elemen di bawah diagonal utamanya bernilai nol, sehingga seolah-olah berbentuk segitiga. Perhatikan contoh berikut. Matriks segitiga atas biasanya digunakan sebagai dasar untuk mencari determinan dengan metode reduksi baris. 6. Matriks segitiga bawah Merupakan matriks persegi yang elemen di atas diagonal utamanya bernilai nol. Perhatikan contoh berikut. 7. Matriks diagonal Merupakan matriks persegi yang semua elemennya bernilai nol, kecuali diagonal utamanya. Perhatikan contoh berikut. 8. Matriks identitas Merupakan matriks diagonal yang setiap elemen diagonal utamanya bernilai satu. Perhatikan contoh berikut. 9. Matriks singular Merupakan matriks yang determinannya bernilai nol. Artinya, kamu bisa menentukan singularitas matriks melalui perhitungan karena tidak bisa dilihat secara visual hanya dari bentuk matriksnya saja. Perhatikan contoh berikut. Matriks P termasuk singular karena determinannya bernilai nol. Det P = 2 × 8 – 4 × 4 = 16 – 16 = 0 Sifat-Sifat Matriks Sifat-sifat matriks berlaku pada saat matriks dioperasikan dengan matriks lain. Adapun sifat-sifatnya adalah sebagai berikut. Sifat penjumlahan matriks Penjumlahan hanya berlaku pada matriks yang memiliki ordo sama. Jika ordo antarmatriksnya berbeda, maka tidak bisa dilakukan penjumlahan. Misalnya, penjumlahan antarmatriks ordo 2 × 2, antarmatriks 3 × 3, dan seterusnya. Penjumlahan ini memenuhi sifat-sifat berikut. Sifat komutatif, yaitu sifat yang memenuhi A + B = B + A. Sifat asosiatif, yaitu sifat yang memenuhi A + B + C = A + B + C. Sifat matriks nol, yaitu sifat yang memenuhi A + 0 = A. Sifat pengurangan matriks Sama seperti penjumlahan, pengurangan hanya berlaku untuk matriks berordo sama. Namun, sifat-sifat penjumlahan tidak berlaku pada pengurangan, kecuali sifat pengurangan dengan matriks nol, yaitu A – 0 = A. Sifat perkalian matriks Perkalian antara dua matriks bisa dilakukan jika jumlah kolom matriks pertama sama dengan jumlah baris matriks kedua. Misalnya matriks ordo 2 x 3 bisa dikalikan dengan ordo 3 x 2, matriks ordo 3 x 1 bisa dikalikan ordo 1 x 3, dan seterusnya. Ingat, ketentuan ini tidak bisa dibalik, ya. Pada perkalian matriks berlaku sifat-sifat berikut. Sifat asosiatif, yaitu A × B × C = A × B × C. Sifat distributif, yaitu A × B + C = A × B + A × C. Perkalian dengan matriks nol akan menghasilkan matriks nol, yaitu A × 0 = 0. Cara Menghitung Matriks Cara menghitung matriks tentu tidak lepas dari operasi penjumlahan, pengurangan, dan perkalian. Lantas, bagaimana cara menghitungnya? Cara menghitung hasil penjumlahan matriks Hasil penjumlahan matriks diperoleh dengan menjumlahkan elemen-elemen yang seletak. Misalnya elemen pada baris ke-1 dan kolom ke-1 dijumlahkan dengan elemen yang sama. Perhatikan contoh berikut. Diketahui dua buah matriks seperti berikut. Tentukan hasil penjumlahan kedua matriks tersebut! Pembahasan Jangan lupa untuk menjumlahkan elemen yang seletak. Jadi, hasil penjumlahannya adalah sebagai berikut. Cara menghitung hasil pengurangan matriks Cara menghitung hasil pengurangan matriks sama dengan penjumlahan, yaitu mengurangkan elemen yang seletak. Perhatikan contoh berikut. Diketahui dua matriks seperti berikut. Tentukan hasil pengurangan P – Q! Pembahasan Berikut ini hasil pengurangannya. Jadi, hasil pengurangannya adalah sebagai berikut. Cara menghitung hasil perkalian matriks Cara menghitung perkalian antara dua matriks adalah dengan mengalikan semua elemen baris matriks pertama dengan semua elemen kolom di matriks kedua secara berurutan. Perhatikan ilustrasi berikut. Sampai sini, apakah Quipperian sudah paham cara menghitung hasil operasi matriks? Transpose Matriks Saat belajar materi ini, tak lengkap rasanya jika belum belajar transpose. Apa sih transpose matriks itu? Transpose matriks adalah matriks baru yang dihasilkan oleh perpindahan elemen baris menjadi elemen kolom. Penulisan transpose matriks biasanya dinyatakan sebagai indeks superscript pada matriks awalnya, misal AT, PT, BT, dan seterusnya. Perhatikan ilustrasi berikut. Dari ilustrasi di atas, perpindahan elemen baris menjadi kolom ditandai dengan warna garis putus-putus yang sama. Contoh Soal Matriks Untuk mengasah pemahamanmu tentang pembahasan kali ini, yuk simak contoh soal berikut. Contoh soal 1 Diketahui persamaan matriks seperti berikut. Tentukan nilai x – y! Pembahasan Pada soal di atas, berlaku perkalian matriks. Oleh sebab itu, kamu harus menguraikan hasil perkaliannya. Jadi, x – y = 2 – 4 = -2. Contoh soal 2 Diketahui data ketersediaan beberapa merek vaksin di enam puskesmas. PuskesmasVaksin AVaksin BVaksin CVaksin DKecamatan 1Tidak ada120 sasaran100 sasaranTidak adaKeamatan 210 sasaranTidak ada50 sasaran10 sasaranKecamatan 3138 sasaran88 sasaranTidak ada5 sasaranKecamatan 4Tidak ada100 sasaran70 sasaranTidak adaKecamatan 51 sasaranTidak adaTidak ada128 sasaranKecamatan 620 sasaran90 sasaran50 sasaranTIdak ada Buatlah bentuk matriks dari data di atas! Pembahasan Untuk membuat matriks, kamu hanya perlu melihat banyaknya baris dan kolom yang tertera pada tabel. Data pada tabel di atas akan membentuk matriks ordo 6 × 4 seperti berikut. Ternyata, cara membuatnya sangat mudah kan? Contoh soal 3 Diketahui dua transpose matriks seperti berikut. Berapakah hasil perkalian antara D dan E? Pembahasan Mula-mula, kamu harus mencari komposisi matriks awalnya, yaitu D dan E. Dengan demikian, hasil perkalian antara D dan E adalah sebagai berikut. Itulah pembahasan Quipper Blog kali ini. Semoga bermanfaat, ya. Untuk melihat materi lengkapnya, yuk buruan gabung Quipper Video. Salam Quipper!
Apayang dimaksud dengan matriks serta apa saja jenis-jenisnya? Yuk, simak artikel selengkapnya berikut ini. Daftar Isi Sembunyikan Pengertian Matriks Jenis-Jenis Matriks 1. Matriks baris 2. Matriks kolom 3. Matriks nol 4. Matriks persegi 5. Matriks segitiga atas 6. Matriks segitiga bawah 7. Matriks diagonal 8. Matriks identitas 9. Matriks singular
Diketahuimatriks A=[3 0 2 5], B= [x -1 y 1], dan C Diketahui matriks A=[3 0 2 5], B= [x -1 y 1], dan C Cek video lainnya. Sukses nggak pernah instan. Latihan topik lain, yuk! Persamaan Dan Pertidaksamaan Linear Satu Variabel Wajib; Pertidaksamaan Rasional Dan Irasional Satu Variabel;
sistempersamaan linear dan matrik. soleh uzain. Download Free PDF View PDF. KURIKULUM BERBASIS KOMPETENSI JUR MATEMATIKA. tody amanah. 3-silabus-matematika-sma-150501080719-conversion-gate01. Hendra Mathematic. Download Free PDF View PDF. Enos Lolang Aljabar Abstrak. Idhul Rahman. MatriksX yang memenuhi persamaan (2 7 5 3)X = (-3 8 7 -9) adalah . Invers Matriks ordo 2x2 Diketahui (4 -3 2 -5)(x y)=(-3 9). Nilai dari x/y + y/x= dengan 29 lalu untuk yang min 1 per 29 ini kita juga kali kan dengan minus 58 sehingga kita dapati bawahnya kan = 2 x min 3 x min 1 dan yang ini 2 jadi kita dapati matriks X ternyata
Matriks Operasi Pada Matriks. Diketahui persamaan matriks 3 (5 x y 4)+ (-6 x-4 3-y -7)= (9 8 13 5). Nilai 2x-y adalah Operasi Pada Matriks. Matriks. ALJABAR. Matematika.
.
  • s9a7rf13d9.pages.dev/122
  • s9a7rf13d9.pages.dev/473
  • s9a7rf13d9.pages.dev/293
  • s9a7rf13d9.pages.dev/427
  • s9a7rf13d9.pages.dev/187
  • s9a7rf13d9.pages.dev/381
  • s9a7rf13d9.pages.dev/397
  • s9a7rf13d9.pages.dev/399
  • diketahui persamaan matriks 1 3 2 5